Automated Code Extraction from Discussion Board Text Dataset

Sina Mahdipour Saravani, Sadaf Ghaffari, Yanye Luther, James Folkestad, and Marcia Moraes

sina@cs.utah.edu marcia.moraes@colostate.edu

Epistemic Network Analysis (ENA)

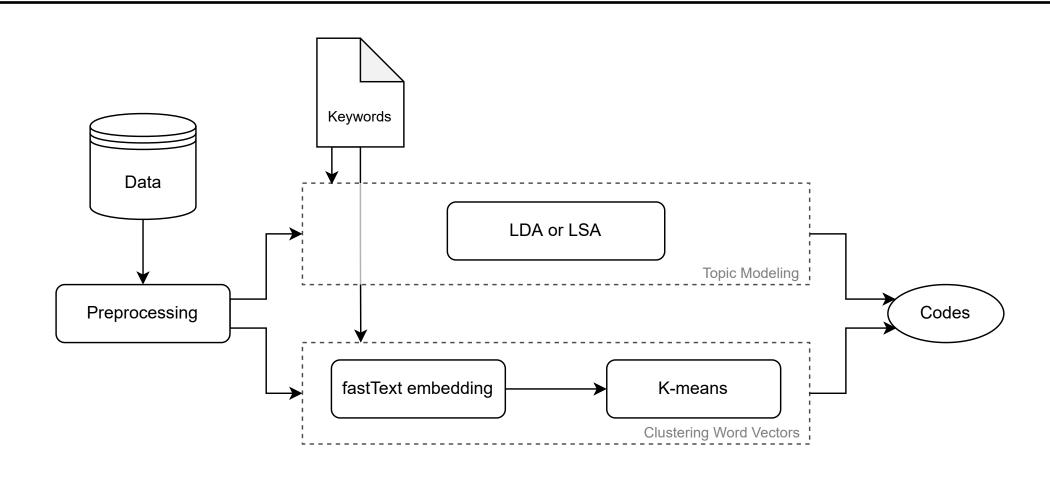
- A method for identification and quantification of connections between elements in coded data.
 - Applications in health care, educational games, and online discussion analysis.

- ENA for visualization of learning analytics for participatory Quantitative Ethnography.
 - Visualizing the connections between codes in an online discussion board.
 - Using manually coded data.

ENA for Visualization in QE

- Based on feedbacks from reviewers of a teaching innovation grant committee:
 - \rightarrow Visualization is desirable.
 - → Providing the codes is not desirable, since coding process is time consuming.
 - Even using tools such as nCoder.
 - \rightarrow Its easy to provide keywords that the codes should contain.

Model Overview

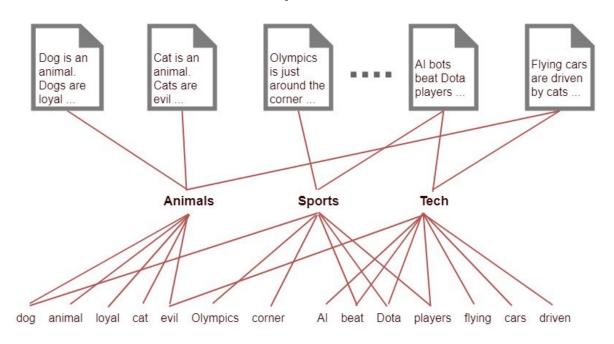


Preprocessing

- Tokenization
- Lowercasing
- Stop word removal
- Applying minimum word length
- Irrelevant text removal
- Named-entity removal
- In-document frequency filtering
- Bigram and trigram addition

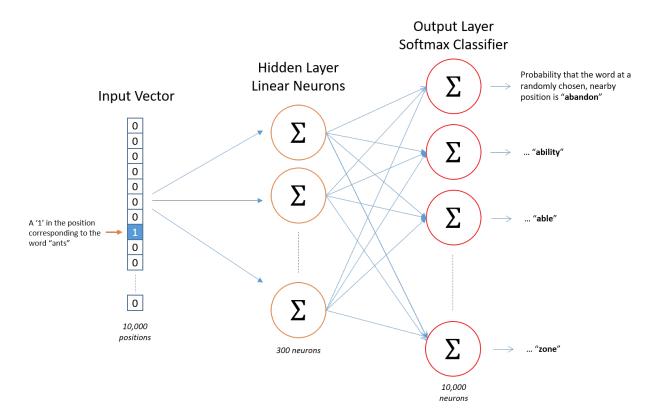
Topic Modeling

- Latent Dirichlet Allocation:
 - → "Each document can be described by a distribution of topics and each topic can be described by a distribution of words".

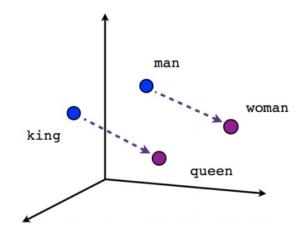


Word Vectors (Embeddings)

• Skip-gram word2vec



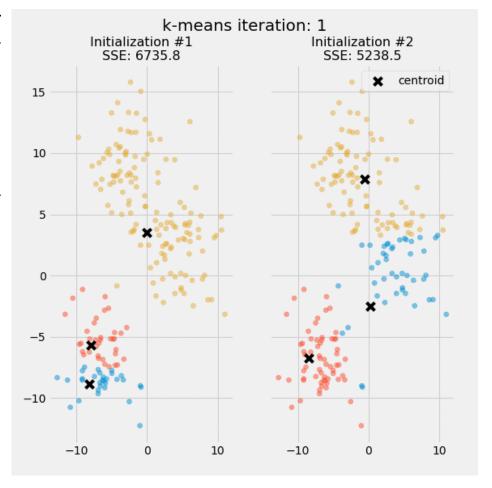
$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$



K-means

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- 4: **expectation:** Assign each point to its closest centroid.
- 5: **maximization:** Compute the new centroid (mean) of each cluster.
- 6: **until** The centroid positions do not change.



Incorporating keywords

In Topic Modeling:

$$p(k_t, t) = \frac{keywords_total_probability}{n_{k_t}}$$

$$p(w,t) = \frac{(1 - keywords_total_probability)}{(n_w - n_{k_t})}$$

$$p(w,t) = \frac{1}{n_w}$$

In Clustering Word Vectors:

 Use the average of provided keywords for each code as the cluster centroid.

Coherence Evaluation

Gensim's coherence model from:

Michael Roeder, Andreas Both and – Alexander Hinneburg: "Exploring the space of topic coherence measures"

No. Clusters	Coherence Score				
2	0.2851				
3	0.2915				
4	0.2944				
5	0.5017				
6	0.3776				
7	0.4071				
8	0.4067				
9	0.3427				
10	0.3773				

Results

LDA extracted codes

					н				
Topic 0	Topic	c 1	Topic 2			Topic 3		Topic 4	
lecture	desir	re	dyslexia			confidence		mass	
solution	desire_dif	fficulty	learn_style			feedback		mass_practice	
classroom	plf	?	individual			calibration		interleaving_practice	
surgeon	resona	ate	learn_differ			confidence_memory		space_retrieval	
acquire	parach	nute	disable			accuracy		tend	
instruct	fall	l	intelligent			peer		day	
learn_learn	land	d	prefer			answer		long_term	
impact	jum	p	support			event		week	
demand	parachute	e land	dysl	exia		state		myth	
lecture_classroom	land_fall		focus			calibration_learn		practice_space	
	Щ.				Π				

Effortful learning styleion of master trieval practice, Spacing out practice, and Interleaving

Limitations

• LSA:

- Extracted code words of a single topic often contain words from multiple manual codes.
- Words from manual codes appear as keywords in multiple topics.

• LDA:

• *Elaboration* code is not retrieved; however, it had the lowest kappa agreement between the human coders.

Clustering Word Vectors:

- Word-document information is lost as dataset is treated as a big dictionary.
- Pretraining objective of fastText puts syntactically close words in proximity in the vector space.

Conclusion and Future Work

- Even with small datasets, the presented method extracts many of the codes and would be a useful asset to course instructors.
- LDA performs the best among tested methods.
- Exploiting Word Vectors has a high potential due to superiority of embeddings to bag of words modeling
- Future directions:
 - Replace fastText with contextualized word embeddings such as BERT.
 - → Mitigate the problem with syntax affecting the extracted codes.
 - → Make use of word-document information as context affects vectors.
 - LDA2Vec:
 - C. E. Moody, "Mixing dirichlet topic models and word embeddings to make Ida2vec," arXiv preprint arXiv:1605.02019, 2016.

Questions?

Thanks for your attention!